Characterization Issues for Coated Conductor:

X-Ray Diffraction Techniques

OAK RIDGE NATIONAL LABORATORY

F.A. List, E.D. Specht, L. Heatherly, S. Cook

ARACOR (SBIR II)
J.A. Kerner

Presented at the 2003 DOE Wire Workshop January 21–22, 2003 St. Petersburg, FL

At ORNL, continuous characterization is used routinely during conductor fabrication.

- Auger Electron Spectroscopy (in situ)
 - Surface Composition (~5 100 at. %)
- Laser Scatterometry (ex situ)
 - Optical Roughness (~2.5 1000 nm Ra)
- Parallel-Beam X-ray Diffraction (ex situ)
 - Crystalline Quality & Composition $(\theta$ -2 θ , $\Delta \phi$, $\Delta \omega$, tape scans, pole figs.)

X-ray diffraction provides crystallographic information for epitaxial layers on textured substrates.

a) Parallel-Beam(PBX) Diffraction

b) <u>Divergent-Beam</u> (DBX) Diffraction

c) Energy Dispersive (EDX) Diffraction

"white", parallel source

At ORNL, two 4-circle PBX systems have characterized several kilometers of conductor.

For DBX, ranges of angle are <u>simultaneously</u> used for incidence and detection.

DBX data obtained at ARACOR correlate with critical current density.

A similar correlation is observed for the same tapes using a PBX geometry.

For EDX, ranges of energy (λ) are <u>simultaneously</u> used for incidence and detection.

Bragg condition: $n\lambda = 2d \sin\theta$

Property	PBX θ-2θ geometry	EDX geometry	
X-ray Source	Fixed λ (monochromatic Cu-K α)	Varied λ ("white" W)	
	(λ = 1.542Å)	$(\lambda = 0.2479 \text{Å to } \infty \text{ @ } 50 \text{kV})$	
X-ray Detector	Varied θ	Fixed θ (=5°)	
Data	I (θ)	l(λ or E)	

EDX data are similar to PBX θ -2 θ data.

An EDX system has been used to study precursor conversion at ORNL.

Energy Dispersive X-ray Diffraction (EDX)

- •"white" W source
- EDX detector

A family of x-ray spectra clearly shows evolution of crystalline phases during conversion.

A comparison of properties for different diffraction geometries may suggest applications.

In situ (candidates for process control)

Attribute	Parallel Beam (4-circle)	Parallel Beam (fixed beam)	Divergent Beam	Energy Dispersive
Simplicity	Low	High	High	High
Flexibility	High	Low	Low	Low
Cost*	~\$300k	~\$65K	\$70k	~\$70k

^{* -} approximate cost of prototype system

Complimentary data can be obtained using several diffraction geometries.

Attribute	Parallel Beam (fixed beam)	Divergent Beam	Energy Dispersive
Data	"Tape scan"	ω-scan or φ-scan	Full θ-2θ scan
Rate	~1 sec/point	~1 sec/scan	~100 sec/scan
Information	Crystalline phase content	Texture ($\Delta \phi$, $\Delta \omega$)	Crystalline phase content/distribution
Issues	Drift of d-spacing	Peak overlap	Resolution & fluorescence

Summary / Conclusion

- X-ray diffraction can provide measures of specific crystalline phases (d-spacings) having specific crystallographic orientations.
- A knowledge and control of crystallographic orientation is required for successful fabrication of epitaxial HTS coated conductors.
- Other important film properties include:
 - Non-crystalline components
 - Elemental composition
 - Stress state
 - Thickness

- Non-epitaxial components
- Chemical state
- Morphology
- Roughness

